

Anaconda Mine OU-8 Proposed Plan Public Meeting and Comment Period

Agenda

- Welcome
- Presentation
- Questions and Answers
- Public Comments
- Adjourn

What are the Issues?

- Acidic drain-down fluids containing elevated Total Dissolved Solids from OU-8.
- Heap Leach Pad (HLP) fluids continue to accumulate in the Fluid Management System (FMS) evaporation ponds.
- The ponds are expected to reach capacity in 2-4 years.
- Repeatedly constructing new evaporation ponds is not a sustainable, fiscally responsible long-term remedy to manage the drain-down fluids.

OU-8 Components

December 12, 2016

Anaconda OU-8 Proposed Plan Presentation and Public Meeting

OU-8 VLT HLP 4-Acre Evaporation Pond

June 2009

October 2013

Pond Constructed in 2008, out of capacity by 2012

December 12, 2016

Anaconda OU-8 Proposed Plan Presentation and Public Meeting

1

Contaminants of Concern (COCs)

Contaminants of Concern

Comparison of Analytical Results from Drain-Down Fluids with Maximum Contaminant Levels (MCLs)

Analyte	Range of Detected Concentrations ^a	Primary MCL (µg/L)	State of Nevada Secondary	Federal Secondary
Aluminum	9,000,000 - 27,000,000	NA	200	50 – 200
Antimony	160 – 200	6	NA	NA
Arsenie	110 - 280	10	NA	NA
Beryllium	550 - 1,500	4	NA	NA
Boron	1,100-2,500	NA	NA	NA
Cadmium	170 - 420	5	NA	NA
Chromium (total)	$460 - 2{,}100$	100	NA	NA
Cobalt	28,000 - 70,000	NA	NA	NA
Copper	1,700,000 - 5,700,000	1,300	1,000	1,000
Iron	210,000 - 1,100,000	NA	600	300
Lead	Non-detect	15	NA	NA
Manganese	270,000 - 740,000	NA	100	50
Mercury	4.7 - 29	2	NA	NA
Nickel	17,000 - 41,000	NA	NA	NA
Selenium	Non-detect	50	NA	NA
Silver	50	NA	100	100
Thallium	380 – 890	2	NA	NA
Vanadium	65 - 1,100	NA	NA	NA
Zine	26,000 - 67,000	NA	5,000	5,000

Notes:

MCL = Maximum Contaminant Level

NA = Not Available

 $\mu g/L$ = microgram(s) per liter

- The cancer risk to an outdoor worker is 8 in 100,000, primarily through ingestion of soil materials.
- Contaminants driving this risk are arsenic, chromium, radium-228, and uranium-238.

What are the Remedial Action Objectives (RAOs)?

- Prevent ingestion/direct contact with heap leach materials and fluids containing contaminants of concern (COCs) above human health risk-based levels.
- Minimize exposure to heap leach materials and fluids containing contaminants of ecological concern at levels that are harmful to ecological receptors.
- Maximize groundwater protection by preventing migration of COCs to groundwater at levels above maximum contaminant levels (MCLs).

The 4 Alternatives Considered and Evaluated

Alternative 1	FS Alternative 2	No Further Action Alternative	
Alternative 2	FS Alternative 6a	Passive Evaporation and Top Capping of HLPs	
Alternative 3	FS Alternative 8a	Passive Evaporation and Complete Capping of HLPs	
Alternative 4 (Preferred Alternative)	Combination of key elements of FS Alternatives 6a and 8a, plus stormwater management.		

Alternative 1, No Further Action -Continue Existing Activities

- Collect drain-down fluids
- Maintain collection ditches
- Passive evaporation in ponds
- Wildlife deterrence
- Access control

Capital Cost: approximately \$1,740 Annual O&M Costs: approx. \$168,500 Total Costs: minimum \$2.1 million (30-year Net Present Value)

Alternative 2 –Passive Evaporation & Top Capping of HLPs

- Existing activities, plus:
- Close existing ponds except 4-Acre Pond
- New concrete basin
- New solids repository
- Cap (4 ft. thick) tops only of each HLP

Capital Cost: minimum of \$21.1 million Annual O&M Costs: approx. \$686,300 Total Costs: minimum \$29.7 million (30-year Net Present Value)

December 12, 2016

Anaconda OU-8 Proposed Plan Presentation and Public Meeting

9

Alternative 3 –Passive Evaporation and Complete Capping of HLPs

- Existing activities
- Close existing ponds except 4-Acre Pond
- New concrete basin
- New solids repository
- Cap (4 ft. thick) on top and sides of each HLP
- Top cap spillways to collect/convey stormwater

Capital Cost: minimum of \$51.7 million Annual O&M Costs: approx. \$519,200 Total Costs: minimum \$58.2 million (30-year Net Present Value)

Alternative 4, *Preferred Alternative*-Modified Evaporation, Complete Cap, E-cells, Stormwater

- All components of Alts 1, 2 & 3,
- Except: no concrete basin required with 4-Acre Pond closure, and 2' thick cap instead of 4' thick

Capital Cost: minimum of \$30.4 million Annual O&M Costs: approx. \$381,700 Total Costs: minimum \$36.1 million (30-year Net Present Value)

- Plus: convert most HLP ponds to E-Cells
- Close 4-Acre Pond in place or reprocess contents
- Stormwater Plan: 4 new detention basins, piping, open channels, designed to connect to future adjacent areas stormwater features

Alternative 4, Preferred Alternative -Select Features

December 12, 2016

Anaconda OU-8 Proposed Plan Presentation and Public Meeting

Alternative Selection Criteria

- 1. Protection of human health and the environment
- Compliance with Applicable or Relevant and Appropriate Requirements
- 3. Long-term effectiveness and permanence
- 4. Reduction in toxicity, mobility and volume
- Short-term effectiveness
- 6. Implementability
- 7. Cost
- 8. State acceptance
- 9. Community acceptance

Alternative 1 Evaluation

- Not protective of human health and the environment, as exposure to fluids/solids is not eliminated
- The risk of leaks and potential groundwater contamination would be reduced, but not eliminated
- Precipitation infiltration would not be reduced and generation of drain-down fluids would continue
- Additional ponds would need to be constructed within the next 2-4 years, and in perpetuity, to accommodate build up of solid precipitates and fluids accumulation
- Does not meet Nevada mine closure standards and requirements
- Long-term effectiveness would not be achieved.
- Costs of new pond construction is not included in this alternative.

Alternative 2 Evaluation

- More protective of human health and the environment, as top cap reduces exposure potential
- Reduction in drain-down fluids reduces the risk of leaks and potential groundwater contamination, but complete groundwater protection from potential releases would not be achieved
- Precipitation infiltration and generation of drain-down fluids would be greatly decreased
- Contaminant mass and volume would not be greatly reduced
- More closely meets Nevada mine closure standards and requirements, but dependent on liner conditions and FMS portions
- More difficult to implement than Alternative 1
- Capital costs much greater than Alternative 1, but < Alts 3, 4
- Estimated O&M costs > any of other alternatives

Alternative 3 Evaluation

- More protective of human health and the environment, as full HLP cover reduces potential contact with solids and fluids
- The risk of leaks and potential groundwater contamination are greatly decreased, but contaminant mass & volume may remain
- Long-term generation of drain-down fluids greatly decreased
- 4'-thick complete cover would require substantially more borrow material than Alternatives 2 or 4
- More closely follows Nevada mine closure standards and requirements, but only minimal stormwater routing included
- Long-term effectiveness would be increased
- More difficult to implement than any of the other alternatives
- Capital costs greater than any of the other alternatives
- Estimated O&M costs substantially greater than Alternative 4

Preferred Alternative Alternative 4, Evaluation

- RAOs would be achieved
- Most protective of human health and the environment, as complete cover limits exposure to drain-down fluids and solids
- The risk of leaks and potential groundwater contamination further reduced
- Infiltration virtually eliminated & generation of drain-down fluids further reduced
- Stormwater controls isolate non-contact fluids & decrease risks
- 2'-thick complete cover would require substantially less borrow material than Alternative 3
- 2'-cap meets Nevada mine closure standards and requirements
- More implementable than Alternatives 2 or 3
- Capital costs substantially less than Alternative 3
- Estimated O&M costs significantly less than Alternatives 2 or 3

We Want Your Input!

- √ 30-day Public comment period runs from November 21-December 21, 2016.
- ✓ You can make a verbal comment today which will be transcribed verbatim. There is a 3-minute time limit for verbal comments.
- ✓ You can write a comment and return it in person today, or by mail, email or fax to the contact below:

Jeryl R. Gardner, P.E., C.E.M.

NDEP Anaconda Mine PM 901 S. Stewart St., Suite 4001 Carson City, NV 89701 jgardner@ndep.nv.gov Fax: (775) 687 – 8335

Questions and Answers and Public Comments